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 7 

Abstract. Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are useful molecular indicators 8 

for organic carbon (OC) source and paleoenvironment. Their application in marine environments, 9 

however, is complicated because of the mixed terrestrial and marine contributions to brGDGTs. 10 

Here, we employ two dimensional (2D) ultrahigh-performance liquid chromatography-mass 11 

spectrometry (UHPLC-MS) to analyze brGDGTs in sediments from the Challenger Deep, Mariana 12 

Trench, the deepest ocean in the absent of terrestrial influence. The unique feature is the absence of 13 

5-methyl brGDGTs, and the strong predominance of hexamethylated 6-methyl brGDGT (IIIa’) 14 

(73.4±2.4% of total brGDGTs). The brGDGTs-reconstructed pH is 8.22±0.07, close to seawater pH. 15 

This, combined with characteristics of δ13C (–19.82±0.25%), OC/TN ratio (6.72±0.84), branched 16 

and isoprenoid tetraether (BIT) index (0.03±0.01) and the acyclic hexa-/pentamethylated brGDGTs 17 

ratio (7.13±0.98), strongly suggest that brGDGTs are of autochthonous products from benthic 18 

bacteria or planktonic bacteria. The compiling of literature data reveals that enhanced fractional 19 

abundance of hexamethylated 6-methyl brGDGTs is common in diverse continental margins when 20 

the marine influence became intensified. This may reflect an adaption of brGDGTs-producing 21 

bacteria to weak alkaline seawater and low ambient temperature. Based on the global dataset, the 22 

cross plot of acyclic hexa-/pentamethylated brGDGTs ratio and fractional abundance of brGDGT-23 

IIIa’ is an effective approach to distinguish the terrestrial vs. marine provenance of brGDGTs.  24 

 25 

1. Introduction 26 

Glycerol dialkyl glycerol tetraethers (GDGTs) are widely distributed biomarkers in terrestrial 27 

and marine settings (Schouten et al., 2013 and references therein). There are two major types of 28 

GDGTs, isoprenoidal GDGTs (iGDGTs) and branched GDGTs (brGDGTs) (Sinninghe Damsté et 29 
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al., 2000; Weijers et al., 2006). IGDGTs containing isoprenoid carbon skeleton are biosynthesized 30 

by archaea such as Thaumarchaeota, Crenarchaeota and Euryarchaeota (Sinninghe Damsté et al., 31 

2002; Schouten et al., 2008; Knappy et al., 2011; Lincoln et al., 2014). In contrast, brGDGTs 32 

consisting of 4–6 methyl groups and 0–2 cyclopentane moieties are biosynthesized by certain 33 

bacteria including, but not limit to, Acidobacteria (Sinninghe Damsté et al., 2011). These bacteria 34 

are able to alter the degree of methylation and cyclization of brGDGTs with changing ambient 35 

environmental conditions (Weijers et al., 2007b). A survey for global soils reveals that the 36 

Cyclization of Branched Tetraethers (CBT) correlates with soil pH, while the Methylation of 37 

Branched Tetraethers (MBT) is dependent on mean annual air temperature (MAT) and to less extent 38 

on soil pH (Weijers et al., 2007b; De Jonge et al., 2014a), leading to the development of brGDGTs-39 

based MBT/CBT proxies for paleo-pH and MAT. The concentration of brGDGTs is substantially 40 

higher in peats and soils than marine sediments, and generally decreases from coastal to distal 41 

marine sediments (Hopmans et al., 2004; Schouten et al., 2013). These distribution patterns support 42 

that brGDGTs in marine settings is derived from terrestrial (particularly soil) inputs. Consequently, 43 

the Branched vs. Isoprenoid Tetraether (BIT) index was proposed for estimation of terrestrial (soil) 44 

OC in marine sediments (Hopmans et al., 2004).  45 

For the past two decades, the brGDGT-derived proxies such as BIT, MBT and CBT have been 46 

increasingly used to assess OC source (Herfort et al., 2006; Kim et al., 2006; Loomis et al., 2011; 47 

Wu et al., 2013), soil pH and MAT in a diverse of environments (Weijers et al., 2007a; Sinninghe 48 

Damsté et al., 2008; Peterse et al., 2012; Yang et al., 2014). However, the weakness of brGDGTs-49 

based proxies is their source uncertainty. Although brGDGTs were assumed to be specific for 50 

soil/peat bacteria, distinct compositions of brGDGT in rivers (Zhang et al., 2012; Zell et al., 2013; 51 

Zell et al., 2014a), lakes (Sinninghe Damsté et al., 2009; Tierney and Russell, 2009; Loomis et al., 52 

2011; Buckles et al., 2014), marine waters (Liu et al., 2014; Xie et al., 2014; Zell et al., 2014b) and 53 

sediments (Peterse et al., 2009; Zhu et al., 2011; Xiao et al., 2016) support multiple sources of 54 

brGDGTs.  55 

The employment of one liquid chromatography (LC) column identified nine individual 56 

brGDGTs, all of which were assigned as 5-methyl brGDGTs (Schouten et al., 2007). By improving 57 

the performance of liquid chromatographic separation, De Jonge et al. (2013) found that the peaks 58 
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previously identified as 5-methyl brGDGTs were actually the coeluted mixtures of 5-methyl and 6-59 

methyl brGDGTs (3 hexa- and 3 pentamethylated 6-methyl brGDGTs). As a result, the number of 60 

identified brGDGTs increases from 9 to 15, which are further expanded after identification of 7-61 

methyl brGDGTs and other isomers (Ding et al., 2016). The analytical improvement has opened the 62 

window for the redefinition and recalibration of brGDGT-based proxies and reassessment of 63 

brGDGT sources (De Jonge et al., 2014a; Xiao et al., 2015). Adopting the new chromatographic 64 

method, several studies provide the clues of in-situ production of brGDGTs in rivers (De Jonge et 65 

al., 2014b; De Jonge et al., 2015), lakes (Weber et al., 2015; Weber et al., 2018) and marine 66 

sediments (De Jonge et al., 2016; Sinninghe Damsté, 2016). For example, De Jonge et al. (2014b) 67 

found that the brGDGT distribution in suspended particulate matter (SPM) of the Yenisei River is 68 

fairly constant and characterized by high abundance of brGDGT-IIIa’, which were different from 69 

that in surrounding soils. An extended study also by De Jonge et al. (2015) showed a marked shift 70 

of brGDGTs’ compositions from SPM of the Yenisei River to sediments of the Kara Sea. Sinninghe 71 

Damsté (2016) reported brGDGTs in surface sediments from the Berau River delta (Kalimantan, 72 

Indonesia), and suggested in-situ brGDGT production in coastal settings based on the number of 73 

cyclopentane rings (#ringtetra). It should be pointed out that all these studies paid attention to rivers 74 

and continental margins (e.g., De Jonge et al., 2015; Sinninghe Damsté, 2016; Warden et al., 2016), 75 

where the multiple sources and complex processes make difficulty in discerning allochthonous 76 

terrestrial vs. autochthonous marine contributions to the brGDGT pool. Therefore, open ocean in 77 

absence of terrestrial influence is an ideal venue for assessment of source and characters of 78 

brGDGTs in marine settings.  79 

Here, we choose the Challenger Deep, Mariana Trench to analyze brGDGTs in marine 80 

sediments. This deepest trench (ca. 11000 m) is remote from any mainland, and has no significant 81 

terrestrial influence (Jamieson, 2015). Our goals are two folds: 1) to determine the composition and 82 

concentration of brGDGTs in the Mariana Trench sediments and constrain their source; and 2) to 83 

characterize in-situ produced brGDGTs in marine sediments and assess their environmental 84 

implication at the global scale by compiling literature data. 85 

 86 

2. Material and methods 87 
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2.1 Study area and sampling 88 

The Mariana Trench is formed as the subduction of Pacific plate beneath the eastern edge of 89 

the Philippine Sea plate. It has a total length of ca. 2500 km and a mean width of 70 km (Fryer, 90 

1996). The deepest point, the Challenger Deep, is located in southern rim of the Mariana Trench 91 

and has the water depth of ca. 11000 m. Owing to high current speeds and variable current directions, 92 

sediment erosion and/or resuspension at the sediment-water interface may frequently occur (Taira 93 

et al., 2004; Turnewitsch et al., 2014). The Mariana Trench is remote from the landmass and located 94 

in the extremely oligotrophic Pacific Gyre with annual primary production rate of ca. 59 g C m-2 y-95 

1 (Jamieson, 2015). Consequently, the sinking fluxes of particulate OC is low. However, the 96 

sediment of the Challenger Deep was found exhibiting intensive, microbially-mediated 97 

biogeochemical recycling processes relative to that of adjacent abyssal plains (Glud et al., 2013). 98 

Such character has been attributed to unique “V”-shaped geometry, intense seismic activity and 99 

high-frequency fluid dynamics within the trench that promotes lateral transport of sediments from 100 

surrounding shallow regions and accumulation of sedimentary organic matter in trench bottom 101 

(Jamieson, 2015; Xu et al., 2018). 102 

During an expedition aboard RV Zhangjian (Dec. 2016 to Feb. 2017), a sediment core (MT1, 103 

11.43 °N, 142.36 °E, water depth 10840 m, core length 11 cm) was retrieved in the Challenger Deep 104 

using an autonomous 11000 m-rated lander (Fig. 1). The core was immediately stored at –20 oC in 105 

a dark room on board until transported to the laboratory in Shanghai (China) where the core was 106 

sliced at 1–2 cm interval and kept in a –25 oC freezer. Prior to analysis, all sliced sediment samples 107 

(n = 10) were freeze dried at –40 °C and homogenized by steel spatulas. 108 

 109 

2.2 Lipid extraction and GDGT analyses 110 

Sediment samples (0.5–2 g) were mixed with known amount of C46 GDGTs (internal standard) 111 

and 15 ml of mixed dichloromethane/methanol (3:1 v/v). After ultrasonically extracted for 15 min, 112 

the extracts were centrifuged (3000 rpm, 5 min) and the supernatants were decanted into clean flasks. 113 

The extraction was repeated three times. The combined extracts were concentrated by a Rota 114 

Evaporator and further blown down to dryness under mild nitrogen streams. The total lipid extract 115 

was dissolved in hexane/isopropanol (99:1, v/v) and filtered through a 0.45 μm PTFE filter prior to 116 
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analysis. An Agilent ultrahigh performance liquid chromatography-atmospheric pressure chemical 117 

ionization–triple quadruple mass spectrometry system (UHPLC-APCI-MS) was used. The 118 

separation of 5- and 6-methyl brGDGTs was achieved with two silica LC columns in sequence (150 119 

mm × 2.1 mm; 1.9 μm, Thermo Finnigan; USA). The concentration of individual GDGTs was 120 

determined by comparison of the respective protonated ion peak areas with C46 GDGT in a selected 121 

ion monitoring (SIM) mode. The protonated ions were m/z 1050, 1048, 1046, 1036, 1034, 1032, 122 

1022, 1020 and 1018 for brGDGTs, 1302, 1300, 1298, 1296 and 1292 for iGDGTs and 744 for C46 123 

GDGT. 124 

 125 

2.3 GDGT-derived parameters 126 

The BIT index, an abundance ratio of acyclic hexa- to pentamethylated brGDGTs and the 127 

weighted average number of cyclopentane moieties for the tetramethylated brGDGTs (#ringstetra) 128 

were calculated according to the definitions of Hopmans et al. (2004), Xiao et al. (2016) and 129 

Sinninghe Damsté (2016), respectively. The roman numbers denote relative abundance of GDGTs 130 

that are depicted in Fig. 2. 131 

BIT=(Ia+IIa+IIIa+IIa'+IIIa')/(Ia+IIa+IIIa+IIa'+IIIa'+Cren)                              (1) 132 

∑ IIIa / ∑ IIa =(IIIa+IIIa')/(IIa+IIa')                                                                           (2) 133 

#ringstetra=(Ib+2*Ic)/(Ia+Ib+Ic)                                                                             (3)  134 

pH was reconstructed using the CBT’ index, while MAT was calculated according to the 135 

definition of a Multiple linear Regression-based MAT (MATmr) (De Jonge et al., 2014a).  136 

CBT'=log[(Ic+IIa'+IIb'+IIc'+IIIa'+IIIb'+IIIc')/(Ia+IIa+IIIa)]                        (4) 137 

MATmr=7.17+17.1*Ia+25.9*Ib+34.4*Ic − 28.6*IIa                                 (5) 138 

 139 

2.4 Bulk geochemical analysis 140 

About 1–2 g of each sediment sample was treated with 1 N HCl for three days at room 141 

temperature to remove carbonates, rinsed into neutral pH and freeze-dried. After homogenized with 142 

an agate mortar and pestle, approximately 35–40 mg of decarbonated sediments were weighed and 143 

analyzed using a model 100 isotope ratio mass spectrometer (IsoPrime Corporation, Cheadle, UK) 144 

and a Vario ISOTOPE cube elemental analyzer (Elementar Analysensystem GmbH, Hanau, 145 
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Germany). All isotopic data were reported in δ notation relative to VPDB. The intra-lab standards 146 

for normalizing stable carbon isotopic composition (δ13C) was USG24 (Graphite, –16.05‰), which 147 

was obtained from the International Atomic Energy Agency (IAEA, Vienna, Austria). The average 148 

standard deviation of each measurement, determined by replicate analyses of two samples, was 149 

±0.004 wt% for organic carbon (OC) content, ±0.031 wt% for total nitrogen (TN) content and ±0.03‰ 150 

for δ13C. 151 

 152 

2.5 Literature data compilation 153 

The dataset in this study is composed of relative abundance of brGDGTs from 2031 samples, 154 

including 634 soil samples, 473 peat samples, 88 river samples, 410 lake samples and 426 marine 155 

samples (Fig. 1). The detailed information about these samples was listed in supplementary material. 156 

The soil samples are from globally distributed soils (De Jonge et al., 2014a; Ding et al., 2015; Xiao 157 

et al., 2015; Yang et al., 2015; Lei et al., 2016; Wang et al., 2016; Li et al., 2018; Wang et al., 2018; 158 

Zang et al., 2018; Wang et al., 2019). The peat samples are from 96 different peatlands around the 159 

world (Naafs et al., 2017). The river samples are from Danube River (Freymond et al., 2016), 160 

Yenisei River (De Jonge et al., 2015) and Tagus River (Warden et al., 2016). The lake samples are 161 

from East African lakes (Russell et al., 2018), Chinese lakes (Dang et al., 2016; Li et al., 2017; Dang 162 

et al., 2018), Lake St Front (Martin et al., 2019), Lake Lugano and other lakes in the European Alps 163 

(Weber et al., 2018). The marine samples are from Atlantic Ocean (Warden et al., 2016), Kara Sea 164 

(De Jonge et al., 2015; De Jonge et al., 2016), Berau River delta (Sinninghe Damsté, 2016), Ceará 165 

Rise (Soelen et al., 2017), North Sea (Dearing Crampton-flood et al., 2018), and Mariana Trench in 166 

this study. The criteria for citing the literature data is that both 5- and 6-methyl brGDGTs should be 167 

separated and quantified. It is noted that two studies (Weber et al., 2018; Martin et al., 2019) have 168 

analyzed 5-, 6- and 7-methyl brGDGTs. But due to very limited reports for 7-methyl brGDGTs, 169 

these compounds are not included in this study. 170 

 171 

2.6 Statistical analysis  172 

   The SPSS package 22 (IBM, USA) was used for statistical analyses including Pearson 173 

correlation coefficient (r) and one-way Analysis of Variance (ANOVA). The significance level was 174 
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set at P < 0.05 unless stated elsewhere. 175 

 176 

3. Results 177 

3.1 Bulk geochemical parameters 178 

The OC content, TN content, molar ratio of OC and TN content (OC/TN) and δ13C value of 179 

sediments from the Challenger Deep are summarized in Table 1. The OC and TN contents of 180 

sediments vary between 0.26% and 0.31% (0.28±0.01%; mean±STD; same hereafter) and between 181 

0.04% and 0.06% (0.05±0.01%), respectively. The OC/TN and δ13C values range from 5.62 to 8.34 182 

(6.72±0.84) and –19.47‰ to −20.27‰ (–19.82±0.25%), respectively. Both the δ13C and OC/TN 183 

values are comparable to previously reported data for the southern Mariana Trench rim and slope 184 

(δ13C, –20.48±0.88%; OC/TN, 7.00±1.76) (Luo et al., 2017).  185 

 186 

3.2 Concentration and composition of GDGTs in the Mariana Trench  187 

The concentration of iGDGTs and brGDGTs are summarized in Table 2. The summed 188 

concentration of total GDGTs in sediments of the Mariana Trench varies from 574 to 1162 ng g-1 189 

dry weight sediment (dws) (873±166 ng g-1 dws), corresponding to 308±56 μg g-1 OC. The 190 

crenarchaeol is the dominant GDGTs at the concentration of 353 to 667 ng g-1 dws (533±99 ng g-1 191 

dws), corresponding to 188±33 μg g-1 OC. The concentration of brGDGTs ranges from 11 to 18 ng 192 

g-1 dws (15±3 ng g-1 dws), corresponding to 5±1 μg g-1 OC and much lower than the concentration 193 

of iGDGTs. As a result, the BIT index is low in all samples with an average value of 0.03±0.01. 194 

Our improved chromatography has achieved a full separation of 5- and 6-methyl brGDGTs. 195 

Interestingly, only a single peak was detected on the mass chromatogram of acyclic penta- (m/z 196 

1036) and hexamethylated (m/z 1050) brGDGTs (Fig. 3). This feature is distinct difference from 197 

previous studies that have identified two or more peaks (5-methyl, 6-methyl and even 7-methyl 198 

isomers) (e.g., De Jonge et al., 2013; Xiao et al., 2015; Ding et al., 2016). In order to determine the 199 

structure of brGDGTs in the Mariana Trench sediments, we take advantage of an acidic soil sample 200 

from China (Soil-1). This sample was identified to contain both 5-methyl brGDGTs (major) and 6-201 

methyl brGDGTs (minor) (Xiao et al., 2015), and have the IIIa/IIIa’ and IIa/IIa’ ratios of 12.5 and 202 

8.2, respectively (Fig. 3a, b). After combining Soil-1 (soil) and MT-4 (Mariana Trench), two peaks 203 
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were detected for m/z 1050 (hexamethylated brGDGTs) as well as m/z 1036 (pentamethylated 204 

brGDGTs) (Fig. 3e, f). The comparison of retention time among Soil-1, MT-4 and the combined 205 

sample of Soil-1 and MT-4 shows that the peaks of m/z 1050 and 1036 in the MT-1 are 206 

pentamethylated 6-methyl brGDGTs (IIa’) and hexamethylated 6-methyl brGDGTs (IIIa’), 207 

respectively, eluting after 5-methyl brGDGTs from Soil-1 (Fig. 3). This assignment was 208 

corroborated by the reduced 5-emthyl/6-methyl brGDGT ratio of the combined sample that is 1.4 209 

for m/z 1050 and 7.4 for m/z 1036 (Fig. 3e, f). 210 

Throughout the sediment core, the brGDGTs are constantly dominated by 6-methyl isomers 211 

(82.25–86.91%). The fractional abundance of 5-methyl brGDGTs, however, was too low to be 212 

quantified. For individual compounds, brGDGT-IIIa’ is the most abundant (73.40±2.39% of total 213 

brGDGTs), followed by brGDGT-Ia (12.46±1.14%) and brGDGT-IIa’ (10.45±1.20%). The cyclic 214 

compounds (brGDGT-Ib, Ic, IIb’) are minor constituents of the brGDGTs (3.69±0.75%), resulting 215 

in low #ringstetra values (0.26±0.04). The classification based on the number of methyl groups shows 216 

the dominance of hexamethylated brGDGTs (73.53±2.56%) over tetramethylated (15.43±1.53%) 217 

and pentamethylated (11.04±1.49%) brGDGTs. 218 

 219 

4. Discussion 220 

4.1 In-situ production of 6-methyl brGDGT in the Mariana Trench 221 

To the best of our knowledge, there are only two reports about GDGTs in the Mariana 222 

subduction zone. Guan et al. (2019) investigated iGDGT distribution in the surface sediments 223 

(4900–7068 m) from the southern Mariana Trench, while Ta et al. (2019) analyzed iGDGTs and 224 

brGDGTs in two sediment cores (ca. 5400 m) at subduction plate of the Mariana Trench. These two 225 

studies, however, did not separate the 5- and 6-methyl brGDGTs, and thus are unable to reveal any 226 

information about source and environmental implication of 5- and 6-methyl brGDGTs. In our study, 227 

the strong predominance of 6-methyl brGDGTs and the absence of 5-methyl brGDGTs in the Marine 228 

Trench sediments are a unique feature. In order to understand the mechanism to produce such unique 229 

compositions of brGDGTs, source assessment of brGDGTs is needed. 230 

The multiple lines of evidence from stable carbon isotope, OC/TN ratio and biomarkers 231 

unanimously support an in-situ production of brGDGTs in the Mariana Trench. The δ13C and OC/TN 232 
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ratio have been widely used to distinguish terrestrial vs. marine OC (Meyers, 1997). Generally, 233 

marine algae and bacteria are protein-rich and have OC/TN ratio of 4 to 10, whereas vascular land 234 

plants are cellulose and lignin-rich and have OC/TN ratio of 20 or greater. Due to different carbon 235 

sources and photosynthetic pathways, the typical δ13C value is ca. –22‰ to –20‰ for marine 236 

organisms (Meyers, 1994) and –27‰ for terrestrial C3 plants (O'Leary, 1988). Sediments from the 237 

Mariana Trench yield enriched δ13C signatures (–19.82±0.25‰) and low OC/TN values (6.72±0.84), 238 

suggesting marine phytoplankton/bacteria as a major contributor to sedimentary OC (Fig. 4). This 239 

result is expected since the Mariana Trench is remote from the landmasses (Fig. 1) and also agrees 240 

with the previous report from Luo et al. (2017). 241 

Long-distance dust transport from continent to open ocean might deliver brGDGTs to the 242 

Mariana Trench. Unfortunately, no data is available about brGDGTs of eolian dust in the Mariana 243 

Trench region. Weijers et al. (2014) compared the composition of brGDGTs between the marine 244 

sediments and atmospheric dust in the equatorial West African coast, and the great difference 245 

suggests an in-situ production of brGDGTs in the marine sediments, rather than dust input. Here, 246 

we examine the brGDGT compositions in the Mariana Trench sediments with literature data from 247 

global environmental settings (Fig. 5). Relative to the Mariana Trench sediments (brGDGT-Ia 248 

12.46±1.14%, 5-methyl brGDGTs ~0, brGDGT-IIIa’ 73.40±2.39%), terrestrial samples are 249 

characterized by significantly higher proportions of brGDGT-Ia (soil 37.52±25.91%, peat 250 

59.40±21.19%, river 15.38±2.97%) and 5-methyl brGDGTs (soil 23.56±14.83%, peat 251 

34.04±19.18%, river 33.25±8.51%), but lower proportions of brGDGT-IIIa’ (soil 4.89±4.82%, peat 252 

4.86±4.68%, river 11.68±4.40%) (p < 0.005) (Fig. 5). These terrestrial samples are globally 253 

distributed and many of them are from inner Asian continent, the major source area of dust in North 254 

Pacific (Husar et al., 2001). Thus, brGDGTs in the Mariana Trench sediments are unlikely derived 255 

from air dusts. We note that brGDGTs in the Lake Lugano, a deep meromictic Swiss lake, is also 256 

characterized by the strong predominance of brGDGT-IIIa’ (up to 90%) (Fig. 5; Weber et al., 2018), 257 

where the distributional patterns and δ13C of brGDGTs support an provenance in the lower part of 258 

the oxygenated water column. However, most marine samples in the literature present low 259 

proportions of brGDGT-IIIa’ (9.61±6.28%), much lower than that of the Mariana Trench sediments. 260 

This difference may reflect different terrestrial influences since most marine samples in previous 261 
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studies are from continental margins where significant inputs of terrestrial-derived brGDGTs may 262 

mask the marine signal (Hopmans et al., 2004). 263 

Low BIT values (0.03±0.01; Fig. 6) in the Mariana Trench sediments is in similar to distal 264 

marine sediments (an average of 0.04) (Schouten et al., 2013; Weijers et al., 2014), suggesting 265 

insignificant terrestrial inputs. By compilation of globally distributed 1354 marine sediments and 266 

589 soils, Xiao et al. (2016) found that the (IIIa+IIIa’)/(IIa+IIa’) ratio was < 0.59 in over 90% of 267 

soils and 0.59–0.92 and > 0.92 in marine sediments with and without significant terrestrial inputs, 268 

respectively. In this study, the (IIIa+IIIa’)/(IIa+IIa’) ratio varies between 5.68 and 8.33 (7.13±0.98) 269 

(Fig. 6), much higher than the threshold value for marine origin (0.92), supporting in-situ production 270 

of brGDGTs in the Mariana Trench sediments.  271 

De Jonge et al. (2014a) proposed a CBT’ index to reconstruct the soil pH based on global 272 

distributed soils. Combined with new available data, we recalibrated the correlation of soil pH with 273 

the CBT’ index:  pH=(1.459 ± 0.025) × CBT′+(7.001 ± 0.023) (𝑛 = 628, R2 = 0.84, 𝑝 <274 

0.001)  (Fig. 7a). According to this equation, the CBT’ index of the Mariana Trench sediments 275 

ranges from 0.78 to 0.90 (0.84±0.05) and the reconstructed pH is 8.22±0.07 (Fig. 7a). This pH is 276 

very close to that of weak alkaline seawater (ca. 8.2), and therefore the brGDGTs in the Mariana 277 

Trench are most likely produced in the marine environment.   278 

Overall, the characters of bulk geochemical parameters, brGDGT compositions, the BIT index 279 

and brGDGT-derived pH of soil and marine samples all support that brGDGTs in Mariana Trench 280 

sediments are in-situ products rather than terrestrial inputs. 281 

 282 

4.2 High fractional abundance of brGDGT-IIIa’ as a common phenomenon in marine 283 

environments 284 

Not only Mariana Trench sediments, but also samples from continental margins show relatively 285 

high proportions of hexamethylated 6-methyl brGDGTs. Dearing Crampton-flood et al. (2018) 286 

explored brGDGTs and bulk properties of organic matter in a sediment record from the North Sea 287 

Basin during the period of early Pliocene to early Pleistocene. The OC content, δ13C value, BIT and 288 

#ringstetra index indicate a transition from predominant marine OC during the Pliocene to 289 

predominant terrestrial OC in the Pleistocene. Correspondingly, the fractional abundance of 290 
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brGDGT-IIIa’ is higher during the Pliocene (8.06±1.92%) than the Pleistocene (5.16±0.83%), and 291 

exhibits significant correlations with δ13C (R2 = 0.68, p < 0.001) and the BIT index (R2 = 0.46, p < 292 

0.001) (Fig. 8a, b, c). These correlations support that the variation in OC source controls the 293 

composition of brGDGTs.  294 

Another supporting evidence is from the Kara Sea. De Jonge et al. (2016) investigated 295 

sedimentary brGDGT record of the Kara Sea spanning a minimum of 13.3 ka. The greater marine 296 

OC contribution in the shallow sediments (1–130 cm; < 10 ka) was revealed by heavier δ13C (up to 297 

–23‰) and lower BIT index (close to 0) compared to deep sediments (Fig. 8e, f). Coincide with this 298 

change, the fractional abundance of GDGT-IIIa’ appeared to be increasing from < 5% to 15% (Fig. 299 

8d). Similar to the North Sea Basin, the significant correlations of the fractional abundance of 300 

brGDGT-IIIa’ with the δ13C (R2 = 0.34; p < 0.001) and the BIT index (R2 = 0.50; p < 0.001) were 301 

observed in the Kara Sea, again suggesting that marine organisms tend to produce more 302 

hexamethylated 6-methyl brGDGTs. 303 

Besides temporal variations in sediment cores, the fractional abundance of 6-methyl brGDGTs 304 

also varied spatially in modern samples from land to sea. Warden et al. (2016) examined brGDGTs 305 

along a transect from the Tagus River into the deep ocean off the Portuguese margin. From source 306 

to sink in the Tagus River basin, the BIT index decreases from 0.9 to < 0.1, reflecting a substantial 307 

increase in marine contribution to sedimentary OC pool (Fig. 8h). Meanwhile, the proportion of 308 

brGDGT-IIIa’ increases from 11.07±2.62% to 29.31±6.45%, and brGDGT-IIIa’ became the most 309 

abundant compound in the Lower Setúbal Canyon sediments (Fig. 8g). Sinninghe Damsté (2016) 310 

reported brGDGT composition in surface sediments from the Berau River delta including two coast-311 

shelf transects, and proposed #ringstetra index to discern sources of brGDGTs. The #ringstetra index 312 

shows a marked increase from the river mouth (0.22) to the shelf break (0.83). By compiling the 313 

data in Sinninghe Damsté (2016), we found that the proportion of brGDGT-IIIa’ generally increases 314 

seawards, presenting a similar distribution pattern as that of the δ13C and BIT index (Fig. 8i, j, k). 315 

These spatial variations confirm that that marine in-situ production of brGDGTs is characterized by 316 

the high fractional abundance of hexamethylated 6-methyl isomer.   317 

In sum, the studies for the Kara Sea (De Jonge et al., 2016), the North Sea Basin (Dearing 318 

Crampton-flood et al., 2018), the Tagus River basin (Warden et al., 2016) and the Berau River delta 319 
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(Sinninghe Damsté, 2016) all demonstrate increasing proportion of 6-methyl brGDGTs (particularly 320 

IIIa’) with intensified marine influence. These findings, along with the strong predominance of 321 

brGDGT-IIIa’ in the Mariana Trench sediments, suggest that the high proportion of brGDGT-IIIa’ 322 

is a common phenomenon in marine environments where in-situ production of brGDGTs is 323 

significant. 324 

 325 

4.3 Potential mechanisms to produce high proportions of brGDGT-IIIa’ in marine 326 

environments 327 

A survey of brGDGTs in globally distributed soils suggests that brGDGT producing microbes 328 

can adjust their membrane lipid compositions in response to environmental conditions, reflected by 329 

the increase in cyclization degree of brGDGTs and the shift from 5- to 6-methyl group with 330 

increasing pH and decreasing methylation of brGDGTs with temperature (Weijers et al., 2007b; De 331 

Jonge et al., 2014a; Ding et al., 2015; Xiao et al., 2015). This adaption mechanism may be 332 

extrapolated to marine organisms. In the Mariana Trench, in-situ production yields brGDGTs with 333 

the strong predominance of 6-methyl (84.57±1.53%) (Table 2). The cyclopentane-containing 334 

brGDGTs (Ib, Ic, IIb, IIb', IIc, IIc', IIIb, IIIb', IIIc, IIIc') comprise only 3.69±0.75% of total brGDGTs, 335 

and the #ringstetra index is low (0.26±0.04). This seems contrast to a view that the fractional 336 

abundance of cyclopentane-containing brGDGTs is positively correlated with pH (Sinninghe 337 

Damsté, 2016). This discrepancy can be explained by two reasons. First, the isomerization of 338 

brGDGTs, relative to the cyclization of brGDGTs, is a more effective way in response to changing 339 

pH. Based on global soil dataset, the correlation between the Isomerization of Branched Tetraethers 340 

index (IBT; Xiao et al., 2015) and pH is substantially higher (n = 610, R2 = 0.80, p < 0.001, Fig. 7b) 341 

than that between the #ringstetra index and pH (n = 631, R2 = 0.46, p < 0.001, Fig. 7d) as well as that 342 

between the cyclization index (CBT5me) (De Jonge et al., 2014a) and pH (n = 622, R2 = 0.67, p < 343 

0.001, Fig. 7c). Meanwhile, the global soils with pH > 8 (n = 58) are characterized by higher 344 

fractional abundance of 6-methyl brGDGTs (68.22±10.41%) than the cyclopentane-containing 345 

brGDGTs (16.69±9.43%). The second explanation is that brGDGT producing microbes tend to 346 

produce more hexamethylated brGDGTs at low temperature (Sinninghe Damsté, 2016), thus 347 

reducing the relative proportion of cyclic tetramethylated and pentamethylated brGDGTs. Based on 348 
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the global dataset, if we take 100% of tetramethylated brGDGTs as a starting point, a decreasing 349 

proportion of tetramethylated brGDGTs, most likely caused by decreasing temperature (Weijers et 350 

al., 2007b), is initially compensated by a roughly linear increase of pentamethylated brGDGTs (Fig. 351 

9d) and, to less extent, by a slower increase of hexamethylated brGDGTs (Fig. 9b). However, when 352 

tetramethylated brGDGTs decreases to 20% of total brGDGTs, hexamethylated brGDGTs become 353 

dominant, whereas pentamethylated brGDGTs reach a turning point and begin to rapidly decrease 354 

(Fig. 9b, d). The ternary diagram, plotted with fractional abundance of tera-, penta- and hexa-355 

methylated brGDGTs (Fig. 9), shows that the Mariana Trench sediments have distinct and high 356 

fractional abundance of hexamethylated brGDGTs (73.53±2.56%). We thus propose that low 357 

temperature and high pH of deep-sea environments are responsible for production of brGDGTs with 358 

high degree of methylation and the predominance of 6-methyl brGDGTs, especially brGDGT-IIIa’. 359 

Marine in-situ production of brGDGTs may take place in water column, or sediments, or both. 360 

Sinninghe Damsté (2016) suggested in-situ production of brGDGTs is a widespread phenomenon 361 

in shelf sediments that is especially pronounced at water depths of ca. 50–300 m. Based on an 362 

extended dataset of brGDGTs in open sea sediments (water depth 63–5521 m), the reconstructed 363 

pH ranges from 6.1 to 9.9 (Weijers et al., 2014). This indicates that the brGDGTs was mainly 364 

produced in benthic sediments where the pH of porewater is more variable than that of the water 365 

column. However, the CBT’-derived pH in the Mariana Trench fell in a narrow range (8.22±0.07), 366 

which are in line with the pH of the water column. Additionally, the brGDGTs-reconstructed 367 

temperature using the MATmr index ranged from 9.6 to 10.7 °C (10.2±0.3 °C), which is close to the 368 

water temperature at ca. 300 m, but much higher than the temperature of benthic sediments (1.2 °C) 369 

(Takuro et al., 2015; Tian et al., 2018). Given these facts, in-situ production of brGDGTs can occur 370 

in both water column and benthic sediments, although the contribution weight of each sources may 371 

be site-specific. 372 

 373 

4.4 Deciphering brGDGT provenance in marine sediments 374 

There are increasing concerns about the applicability of the brGDGT-based proxies in 375 

continental margins which are characterized by intense land-sea interaction (De Jonge et al., 2016; 376 

Sinninghe Damsté, 2016; Dearing Crampton-flood et al., 2018). Determining the provenance of 377 
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brGDGTs is prerequisite for accurate application of brGDGTs-based proxies. Our study highlights 378 

that in-situ produced brGDGTs tend to exhibit higher fractional abundance of brGDGT-IIIa’ relative 379 

to terrestrial brGDGTs in most soil and peat samples. However, the fractional abundance of 380 

brGDGT-IIIa’ alone cannot decipher soil and marine source of brGDGTs since fractional abundance 381 

of brGDGT-IIIa’ in soils are variable and can reach up to 51% (De Jonge et al., 2014a). Xiao et al. 382 

(2016) proposed the (IIIa+IIIa’)/(IIa+IIa’) ratio of < 0.59, 0.59–0.92 and > 0.92 to indicate an origin 383 

of brGDGTs from soils, marine sediments with terrestrial influence and marine sediments without 384 

terrestrial influence, respectively. However, the updated dataset shows some overlaps of the 385 

(IIIa+IIIa’)/(IIa+IIa’) values between soils and marine sediments (Fig. 10). In order to circumvent 386 

this problem, we propose a new approach to evaluate the source of brGDGTs based on the slope of 387 

the (IIIa+IIIa’)/(IIa+IIa’) ratio and fractional abundance of brGDGT-IIIa’ (Fig. 10). Specifically, the 388 

slope of global soils (30.5±0.7) is substantially greater than that of marine sediments with terrestrial 389 

influence (8.2±0.1), both of which are substantially greater than the slope of the Mariana Trench 390 

sediments without terrestrial influence (2.3±0.3) (Fig. 10). The extremely low slope of Mariana 391 

Trench sediments likely suggests that brGDGT are completely derived from in-situ production. 392 

The systematic differences in the composition of brGDGTs between terrestrial and marine 393 

production inevitably affect brGDGTs proxies. Since the CBT’ index involves brGDGT-IIIa’, the 394 

marine in-situ production of brGDGTs with higher fractional abundance of brGDGT-IIIa’ is very 395 

likely to impact the CBT’-pH proxy. Although the brGDGT based temperature proxies, like 396 

MBT’5me and MATmr, do not directly involve brGDGT-IIIa’ (De Jonge et al., 2014a), in-situ 397 

production of hexamethylated 6-methyl brGDGT will cause changes in proportions of tetra- and 398 

pentamethylated brGDGTs to different degrees (Fig. 9b, c), and thereby influence brGDGTs based 399 

temperature proxies.  400 

 401 

5. Conclusions 402 

This work represents the first study for 5-methyl and 6-methyl brGDGT in sediments from the 403 

Mariana Trench, the deepest ocean realm, from which we have reached three conclusions.  404 

1) The Mariana Trench sediments are characterized by the strong predominance of 6-methyl 405 

brGDGTs (84.57±1.53% of total brGDGTs), especially brGDGT-IIIa’ (73.40±2.39%), whereas 5-406 
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methyl brGDGTs are below detection limit. This unique feature has never been previously reported 407 

and is attributed to a combined effect of the lack of terrestrial input, alkaline seawater and low 408 

subsurface temperature in the Mariana Trench.  409 

2) High (IIIa+IIIa’)/(IIa+IIa’) values (7.13±0.98), enriched δ13C signatures (–19.82±0.25%), 410 

low OC/TN ratios (6.72±0.84) and low BIT index (0.03±0.01) strongly suggest an in-situ production 411 

of brGDGTs. By compiling brGDGT dataset from 634 soil, 473 peat, 88 river, 410 lake and 426 412 

marine samples, we recalibrate the correlation of soil pH with the CBT’ index (R2 = 0.84, p < 0.001). 413 

The reconstructed CBT’-pH (8.22±0.07) is close to weak alkaline seawater, while the MBTmr 414 

reconstructed temperature (10.2±0.3 °C) is close to water temperature at ca. 300 m deep, suggesting 415 

a principal contribution of planktonic bacteria to the brGDGT pool in the Mariana Trench sediments.  416 

3) BrGDGTs in sediments from the Mariana Trench and several continental margins were 417 

found to comprise higher fractional abundance of hexamethylated 6-methyl brGDGTs with 418 

intensified marine influence. The slope of fractional abundance of brGDGT-IIIa’ and the 419 

(IIIa+IIIa’)/(IIa+IIa’) index can be used to decipher the terrestrial and marine provenance of 420 

brGDGTs. Since in-situ production of predominant hexamethylated 6-methyl brGDGT influences 421 

the robustness of brGDGT-based proxies, this study provides a new way to estimate brGDGT 422 

sources and holds some promise in reducing uncertainty of brGDGTs-based paleoenvironmental 423 

proxies. 424 

 425 

Data availability: Data have been made available through FIGSHARE: 426 

https://doi.org/10.6084/m9.figshare.9896120.v1 (Xiao et al., 2019)  427 
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Table 1. Organic carbon (OC) content, total nitrogen (TN) content, molar ratio of OC/TN and stable 701 

carbon isotopic composition (δ13C) in the Mariana Trench sediments 702 

 703 

Sample 

ID 

Depth 

(cm) 

OC 

(wt. %) 

TN (wt. %) OC/TN 

(mol/mol) 

δ13C  

(‰) 

MT1 0-2 0.31 0.05 6.52 –20.02 

MT2.5 2-3 0.27 0.05 6.05 –19.66 

MT3.5 3-4 0.29 0.05 6.85 –19.55 

MT4.5 4-5 0.27 0.05 5.78 –19.84 

MT5.5 5-6 0.29 0.06 6.13 –19.94 

MT6.5 6-7 0.30 0.06 5.62 –19.47 

MT7.5 7-8 0.27 0.04 7.27 -19.54 

MT8.5 8-9 0.29 0.05 6.93 –19.82 

MT9.5 9-10 0.28 0.04 7.74 –20.09 

MT10.5 10-11 0.26 0.04 8.34 –20.27 

 704 
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Table 2. Fractional abundance and concentration of brGDGTs and crenarchaeol (cren) in the Mariana Trench sediments. 706 

Sample 

ID 

Ia 

(%) 

Ib 

(%) 

Ic 

(%) 

IIa 

(%) 

IIa' 

(%) 

IIb 

(%) 

IIb' 

(%) 

IIc 

(%) 

IIc' 

(%) 

IIIa 

(%) 

IIIa' 

(%) 

IIIb 

(%) 

IIIb' 

(%) 

IIIc 

(%) 

IIIc' 

(%) 

BrGDGTs 

(ng/g) 

Cren 

(ng/g) 

MT1 13.6 2.7 1.5 0.0 10.4 0.0 0.0 0.0 0.0 0.0 71.8 0.0 0.0 0.0 0.0 18.4 353.3 

MT2.5 13.5 2.4 1.6 0.0 12.1 0.0 1.3 0.0 0.0 0.0 69.0 0.0 0.0 0.0 0.0 14.7 426.7 

MT3.5 11.1 1.4 0.6 0.0 9.5 0.0 0.6 0.0 0.0 0.0 76.2 0.0 0.6 0.0 0.0 16.4 659.8 

MT4.5 14.2 1.4 0.9 0.0 9.2 0.0 0.4 0.0 0.0 0.0 73.9 0.0 0.0 0.0 0.0 12.6 515.4 

MT5.5 11.1 2.0 0.8 0.0 10.3 0.0 0.8 0.0 0.0 0.0 75.0 0.0 0.0 0.0 0.0 15.1 622.7 

MT6.5 11.2 2.1 0.9 0.0 9.1 0.0 0.0 0.0 0.0 0.0 76.0 0.0 0.8 0.0 0.0 20.1 667.2 

MT7.5 13.4 1.5 1.0 0.0 11.3 0.0 1.2 0.0 0.0 0.0 71.5 0.0 0.0 0.0 0.0 12.7 551.8 

MT8.5 13.0 2.2 1.1 0.0 12.7 0.0 0.0 0.0 0.0 0.0 70.9 0.0 0.0 0.0 0.0 13.0 585.1 

MT9.5 11.8 2.0 0.7 0.0 9.2 0.0 0.0 0.0 0.0 0.0 76.3 0.0 0.0 0.0 0.0 11.5 450.6 

MT10.5 11.8 1.8 1.0 0.0 10.6 0.0 1.0 0.0 0.4 0.0 73.3 0.0 0.0 0.0 0.0 14.3 498.3 
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Figure 1. Location of the samples in this study. Red, blue, green, orange and pink circles indicate 708 

globally distributed soil, river, lake, peat and marine samples, respectively. Black star denotes the 709 

sediment core in the Mariana Trench. The detailed information is provided in supplementary 710 

material.  711 
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Figure 2. Chemical structures of brGDGTs and crenarchaeol. 713 
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Figure 3. Extracted ion chromatograms (EICs) of m/z 1050 (left) and m/z 1036 (right) showing 714 

separation of 5-methyl and 6-methyl brGDGTs in soil (top), Mariana Trench sediment (middle) and 715 

combined soil and sediment (bottom).  716 
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Figure 4. Plot of δ13C versus TN/OC for core sediments from the Mariana Trench (MT). Included 718 

in this graph are different compositional ranges of C3 vascular plants, C4 vascular plants, bacteria, 719 

river and estuary phytoplankton and marine phytoplankton sources. The compositional range of 720 

different end members was cited from Goñi et al. (2006) and Hu et al. (2016). The red stars and 721 

green stars denote data from this study and Luo et al. (2017), respectively.   722 

 723 
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Figure 5. Comparisons of distribution of 15 brGDGT compounds in soil (n = 634), peat (n = 473), 726 

river (n = 88), lake (n = 410), marine (n = 415) and Mariana Trench (n = 11) samples.  727 
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Figure 6. Relationship between the (IIIa+IIIa’)/(IIa+IIa’) index and the BIT index of the Mariana 729 

Trench sediments (red star) and globally distribute soil (green circle) and marine samples (blue 730 

square). The dashed lines represent the upper limit of production in the terrestrial realm and the 731 

lower limit of production in the marine realm defined by Xiao et al. (2016).  732 
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Figure 7. Scatterplots of the a) CBT’, b) IBT, c) CBT5me and d) #ringstetra index versus measured 735 

pH of globally distributed soils. The black solid line and dashed line denote the linear calibration 736 

line and associated confidence intervals of 95%. The gray block (a) represents corresponding values 737 

of the Mariana Trench sediment in this study.  738 

 739 

 740 
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Figure 8. Vertical profiles of a) the proportion of GDGT-IIIa’, b) δ13C and c) BIT index of a marine 742 

sediment core from the North Sea Basin (Dearing Crampton-flood et al., 2018). Vertical profiles of 743 

d) the proportion of GDGT-IIIa’, e) δ13C, f) BIT index of a marine sediment core from the Kara Sea 744 

(De Jonge et al., 2016). Spatial distribution patterns of g) average distribution of brGDGTs and h) 745 

BIT index in the transect from the land to the ocean off the Portuguese coast (river floodplain, 746 

mudbelt, Lisbon canyon head and lower Setúbal canyon) (Warden et al., 2016). Isosurface plots of 747 

i) BIT index, j) δ13C and k) the proportion of GDGT-IIIa’ of the surface sediments from the Berau 748 

River delta (Sinninghe Damsté, 2016).  749 
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Figure 9 a) Ternary diagram showing the fractional abundances of tetra-, penta- and hexamethylated 752 

brGDGTs. b) and d) Cross plots of the fractional abundances of tetramethylated brGDGTs versus 753 

hexa- and pentamethylated brGDGTs, respectively. c) Cross plots of the fractional abundances of 754 

pentamethylated brGDGTs versus hexamethylated brGDGTs. The compiled dataset (Supplementary) 755 

includes globally distributed soil, peat, lake, river and marine samples, as well as the Mariana Trench 756 

sediments. 757 

 758 
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Figure 10 Scatterplots of the (IIIa+IIIa’)/(IIa+IIa’) index versus the proportion of brGDGT-IIIa’ of 761 

globally distributed soils and marine sediments. The solid, dashed and dotted line denotes the Linear 762 

fit, 95% confidence band and 95% prediction band of concatenated data, respectively. The number 763 

of samples, slope, R2 and p values of calibration for the global distributed soils, marine sediments 764 

and Mariana Trench sediments are given.  765 
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